详情
氮化镓在射频领域的优势盘点
作者:本站收录
时间:2019-08-06 17:14:19
在本章中,我们将向您介绍氮化镓的基础知识,并且说明氮化镓具有的哪些特性使其成为射频功率放大器和其他高压高频应用的理想材料。
关键词: 氮化镓 射频

在本章中,我们将向您介绍氮化镓的基础知识,并且说明氮化镓具有的哪些特性使其成为射频功率放大器和其他高压高频应用的理想材料。

氮化镓基础知识

镓是一种化学元素,原子序数31。镓并非自由存在于自然中。恰恰相反,镓是锌和铝生产过程中的一种副产品。压电效应造成的材料结构性能退化。

氮化镓复合物由镓和氮原子排列构成,最常见的是纤锌矿晶体结构。纤锌矿晶体结构(图1-1)是一种六边形结构,其特征是有两个晶格常数(图中标记为a 和 c)。

1

在半导体领域,通常在高温条件下(大约1,100摄氏度),在异质衬底上(对于射频应用,采用碳化硅作为衬底材料;对于功率电子器件应用,则采用硅作为衬底材料),利用金属有机化学蒸气沉积或分子束外延技术生长氮化镓。

碳化硅基氮化镓方法综合了氮化镓的高功率密度能力,以及碳化硅的超高导热性和低射频损耗。正是因为这一点,碳化硅基氮化镓方法才成为实现高功率密度射频性能的首选方法。今天,碳化硅基氮化镓的衬底直径可以达到6 英寸。

硅基氮化镓组合的导热性能要差很多,并且射频损耗较高,但造价较为低廉。正是因为这一点,硅基氮化镓组合才成为低成本功率电子器件应用的首选方法。今天,硅基氮化镓的衬底直径可以达到8英寸。

为何氮化镓性能优于其他半导体材料

尽管与硅和砷化镓等其他半导体材料相比,氮化镓是相对较新的技术,但是对于远距离信号传送或高端功率级别等(例如,雷达、基站收发台、卫星通信、电子战等)高射频和高功率应用,氮化镓已经成为优先选择。

碳化硅基氮化镓在射频应用中脱颖而出的原因如下:

1.高击穿电场:

由于氮化镓拥有大能隙,因此氮化镓材料也拥有高击穿电场,所以氮化镓器件的工作电压可以远高于其他半导体器件。当受到足够高的电场影响时,半导体中的电子能够获得足够动能并脱离化学键(这一过程被称为“碰撞电离”或“电压击穿”)。如果碰撞电离没有得到控制,则能够造成器件性能退化。由于氮化镓能够在较高电压下工作,因此能够用于较高功率的应用。

2.高饱和速度:

氮化镓的电子拥有高饱和速度(非常高的电场下的电子速度)。当结合大电荷能力时,这意味着氮化镓器件能够提供高得多的电流密度。

射频功率输出是电压与电流摆幅的乘积,所以,电压越高,电流密度越大,在实际尺寸的晶体管中产生的射频功率越大。简单而言,氮化镓器件产生的功率密度要高得多。

3.突出的热属性:

碳化硅基氮化镓表现出不同一般的热属性,这主要因为碳化硅的高导热。具体而言,这意味着在功率相同的情况下,碳化硅基氮化镓器件的温度不会变得像砷化镓器件或硅器件那样高。器件温度越低才越可靠。

什么是压电性,压电性为何重要?

氮化镓有压电性。“压电”是个独出心裁的词,意思是在压力作用下产生的电能。

“压电”一词分别源自希腊语“piezein”(意思是“挤压”)和“electric”或“electron”(意思是“琥珀色”?古人认识的电荷)。

氮化镓有压电性,这是因为氮化镓的键是离子化的,还因为镓原子和氮原子的连续平面间距并不一致(参见图1-2)。当我们挤压一个平面上的原子时,上方和下方平面的原子移动不同距离,形成净电荷、电场和电压。

现在,您知道了为何氮化镓有压电性,您可能感到奇怪:为何氮化镓的压电属性这么重要。氮化镓的压电性导致了氮化镓晶体管的电子沟道产生的部分电荷。压电性还造成了晶体管的部分退化模式。

我们常用的部分消费电子器件(例如,智能手机)每天都在使用压电属性。体声波和声表面波滤波器(Qorvo生产的滤波器数量以百万计)使用的压电衬底是智能手机实现多频带功能的关键元件。

2

氮化镓的高功率密度优势

如前所述,碳化硅基氮化镓是一种高射频功率密度的半导体。在场效应管中,功率密度通常单位是W/mm,这是因为功率与栅长而不是栅面积成一定比例。显然,如果功率密度较高,则意味着使用较少数量的器件就可获得较高的功率,所以在功率需求一定的情况下,可以缩小器件体积。

现在,器件体积的减小并不仅仅表示材料成本的降低。小尺寸器件还意味着:

(1)降低电容:电路设计人员能够设计带宽更宽的放大器。

(2)减少组合损耗:您可以获得更高的效率和增益,最终还将获得更高的功率。

今天的移动通信基础设施和高级军事系统(例如,相控阵雷达、通信和电子战)都需要高频率、高带宽、高功率和高效率的器件。这些应用也正是氮化镓能够脱颖而出的地方。

上一篇:海南首个ETC感应支付停车场建成 车辆实现秒进秒出 下一篇:车联网射频器件面临的挑战